
Revisiting Exception Handling Practices with
Exception Flow Analysis

Guilherme B. de Pádua
Department of Computer Science and Software Engineering

Concordia University - Montreal, QC, Canada
Email: g bicalh@encs.concordia.ca

Weiyi Shang
Department of Computer Science and Software Engineering

Concordia University - Montreal, QC, Canada
Email: shang@encs.concordia.ca

Abstract—Modern programming languages, such as Java and
C#, typically provide features that handle exceptions. These
features separate error-handling code from regular source code
and aim to assist in the practice of software comprehension and
maintenance. Having acknowledged the advantages of exception
handling features, their misuse can still cause reliability degra-
dation or even catastrophic software failures. Prior studies on
exception handling aim to understand the practices of exception
handling in its different components, such as the origin of the
exceptions and the handling code of the exceptions. Yet, the
observed findings were scattered and diverse. In this paper, to
complement prior research findings on exception handling, we
study its features by enriching the knowledge of handling code
with a flow analysis of exceptions. Our case study is conducted
with over 10K exception handling blocks, and over 77K related
exception flows from 16 open-source Java and C# (.NET) libraries
and applications. Our case study results show that each try block
has up to 12 possible potentially recoverable yet propagated
exceptions. More importantly, 22% of the distinct possible
exceptions can be traced back to multiple methods (average
of 1.39 and max of 34). Such results highlight the additional
challenge of composing quality exception handling code. To make
it worse, we confirm that there is a lack of documentation of
the possible exceptions and their sources. However, such critical
information can be identified by exception flow analysis on well-
documented API calls (e.g., JRE and .NET documentation).
Finally, we observe different strategies in exception handling code
between Java and C#. Our findings highlight the opportunities
of leveraging automated software analysis to assist in exception
handling practices and signify the need of more further in-depth
studies on exception handling practice.

Index Terms—source code analysis; exception flow analysis;
exception handling; software engineering

I. INTRODUCTION

Modern programming languages, such as Java and C#,
typically provide exception handling features, such as throw
statements and try-catch-finally blocks. These features separate
error-handling code from regular source code and are lever-
aged widely in practice to support software comprehension
and maintenance [1], [2].

Having acknowledged the advantages of exception handling
features, their misuse can still cause catastrophic software
failures, such as application crashes [3], or reliability degra-
dation, such as information leakage [4], [5]. A large portion
of systems has suffered from system crashes that were due
to exceptions [6]. Additionally, the importance of exception
handling source code has been illustrated in prior research
and surveys [7], [8].

Prior studies on exception handling aim to understand the
practices of exception handling in its different components: ex-
ception sources and handling code. Yet, the observed findings
were scattered and diverse. Recent empirical studies on excep-
tion handling practices have advocated the suboptimal use of
exception handling features in open source software [9], [10],
[11], [12]. Moreover, in our previous research, we observe the
prevalence of exception handling anti-patterns. These research
findings imply the lack of a thorough understanding of the
practice of exception handling [13].

Therefore, in this paper, we re-visit exception handling
practices by conducting an in-depth study on 16 open-source
Java and C# libraries and applications. To understand and
analyze the state-of-the-practice of exception handling in these
projects, we perform source code analysis to track the flow
of exceptions from the source of exceptions, through method
invocations, to the attempting blocks of exceptions (try block)
and the exception handling block (catch block). With such
flow analysis, we extract information about exception handling
practice in over 10K exception handling blocks, and over 77K
related exception flows from the studied subject systems.

Our case study focuses on four aspects of the exception
handling practices: 1) the quantity of exceptions, 2) the
diversity of exceptions, 3) the sources of exceptions and 4) the
exception handling strategies and actions. Table I summarizes
our findings and their corresponding implications. Such results
confirm the challenge of composing quality exception handling
code. For example, we find a considerable amount of poten-
tially recoverable yet propagated exceptions. However, more
importantly, we highlight the opportunities of leveraging our
automated source code analysis to complement the information
that is valuable for developers when handling exceptions. More
in-depth analyses are needed to ensure and improve the quality
and usefulness of exception handling in practice.

The rest of the paper is organized as follows: Section II
discusses the related prior research of this work. Section III
presents the methodology of the exception flow analysis
through an illustrative example and our case study setup.
Section IV to VII presents the results of our case study. Sec-
tion VIII discusses the threats to the validity of our findings.
Finally, Section IX concludes the paper and discusses potential
future research directions based on our research results.

1

TABLE I
OUR FINDINGS AND IMPLICATIONS ON EXCEPTION HANDLING PRACTICES.

Quantity of Exceptions (Section IV) Implications

(1) There often exist multiple possible exceptions in each try block,
and, out of those, many are propagated.

Current state-of-the-practice may not provide information to de-
velopers about all possible exceptions. Automated techniques may
help developers be aware of all possible exceptions to make
exception handling decisions.

(2) There exists a considerable amount of potentially recoverable
exceptions that are propagated, even though they are recommended
to be handled by Java and C#.

Exception flow analysis can provide automated tooling support
to alert developers about not handling potentially recoverable
exceptions.

Diversity of Exceptions (Section V) Implications

(3) With a significant amount of exceptions existing in each project,
many possible exception types appear in only one try block.

Developers may not need to be aware of all exception types in a
project by receiving automated suggestions of the exceptions that
he/she needs to understand.

Sources of Exceptions (Section VI) Implications

(4) Over 22% of the exceptions are traced from different methods. Automated tools are needed to help developers understand the
source of the exception if it is traced back to different methods.

(5) The libraries used by the systems can provide documentation
to most of the possible exceptions.

Developers should leverage automated analyses to understand pos-
sible exceptions.

Exception Handling Strategies and Actions (Section VII) Implications

(6) Only a small portion of the exceptions are handled with the
Specific strategy.

Developers should be guided to prioritize on handling exceptions
with the Specific strategy, since developers cannot optimize the han-
dling of the exception without knowing its exact type information.

(7) Java and C# have differences in leveraging various actions when
handling exceptions.

More in-depth analysis and user studies are needed to further
understand the rationale of differences of Java and C# exception
handling practices.

(8) Actions that are taken when handling exceptions with specific
or subsumption manners are not statistically significantly different.

Research and tooling support are needed to guide how to handle
exceptions, especially with the specific strategy.

(9) With statistical significance, all top 10 Java and 2 out of top
10 C# exceptions have at least one action that is taken differently
from the rest of the exceptions.

Developers may consider leveraging automated suggestion of ex-
ception handling actions.

II. RELATED WORK

A. Empirical studies on exception handling practices
Prior research studied exception handling based on source

code and issue trackers. Cabral and Marques [14] studied
exception handling practices from 32 projects in both Java and
.Net without considering the flow of exceptions. Prior work by
Jo et al. [15] focuses on uncaught exceptions of Java Checked
exceptions. They proposed an inter-procedural analysis based
on set-based framework without using declared exceptions.

Coelho et al. [16] assessed exception handling strategy
with exception flows from Aspect-oriented systems and object-
oriented systems. They evaluated the number of uncaught
exceptions, exceptions caught by subsumption, and exceptions
caught with specialized handlers.

Sena et al. [17] investigated sampled exception flows from
656 Java libraries for flow characteristics, handler actions, and
handler strategies. We extend their work by looking into a
higher number of flows per system (e.g. in Apache ANT we
identified 930 catch blocks, compared to 2), by considering
applications besides libraries and including C# .NET systems.

Some studies reveal that developers consider exception
handling hard to learn and to use and tend to avoid it or
misuse it [9], [10], [11]. Bonifacio et al. [12] also surveyed
C++ developers encountering revelations of educational issues.

It also has been noted that there is a lack of documentation
of exceptions. Kechagia and Spinellis [18] found that 69%
of the methods had undocumented exceptions and 19% of
crashes could have been caused by insufficient documentation.
Sena et al. [17]’s findings confirm that API runtime exceptions
are poorly documented. Cabral and Marques [19] identify that
infrastructure (20%) and libraries (15%) have better exception
handling documentation when compared to applications (2%).

Significant research aimed to indicate exception handling
problems and their impacts. Sinha et al. [20] leveraged excep-
tion flow analyses to study the existence of 11 anti-patterns
in four Java systems. Other research [2], [8], [7] classified
exception-handling related bugs by mining software issue
tracking. In our previous research, we observe the prevalence
of exception handling anti-patterns [13].

Cacho et al. [21], [22] studied the evolution of the behavior
of exception handling in Java and C# source code changes.
Their results highlight the impact of the programming lan-
guage design differences in the maintenance and robustness
of exception handling mechanisms.

Our study revisits and combines different aspects of the
studies mentioned above. Moreover, we present new findings
(see Table I) that are not yet highlighted in prior research.

2

B. Improving exception handling practices
Robillard and Murphy [23] created a tool to analyze ex-

ception flows in Java programs, including a graphical user in-
terface. Similarly, Garcia and Cacho [24] proposed a different
approach for .NET related languages. Garcia and Cacho’s tool
supports visualization of metrics over the application history.

To support the software development lifecycle, Sinha et
al. [20] provided automated support for development, mainte-
nance and testing requirements related to exception handling.

To improve how developers would deal with exception
handling complexity, Kechagia et al. [25] discuss and propose
improvements in the design of exception handling mecha-
nisms. Zhang and Krintz [26] propose an as-if-serial exception
handling mechanism for parallel programming.

The burden of writing exception handling code has been
pointed out by Cabral and Marques [27]. They showed that a
system with an automated set of recovery actions is capable
of achieving better error resilience than a traditional system.

Barbosa et al. developed strategies with heuristics for
recommending exception handling code as a semi-automated
approach. Zhu et al. [28] proposed an approach that suggests
logging decisions for exception handling.

By conducting an in-depth study on 16 open source projects,
our findings illustrate the opportunities of leveraging various
analysis to combine information from different sources to un-
derstand and assist in exception handling flows and practices.
Our results are valuable to complement and assist in improving
existing exception handling techniques.

III. METHODOLOGY

In this section, we present the methodology of our study.
Aiding the explanation of our methodology, we first consider
an illustrative example. Second, we introduce our exception
flow analysis. Finally, we discuss the subject projects used.1

A. An illustrative example of exception handling practices
In this subsection, we explain an illustrative example that

handles, raises and propagates exceptions (see Figure 1). The
example also illustrates the means of documenting exceptions.

1) Handling possible exceptions: In this example, a devel-
oper would like to implement a method named A. The method
A requires to execute method B. The developer, by other
means, has the knowledge that B can face two issues: 1) having
an invalid path as input and 2) I/O faults. Therefore, instead
of executing as expected, method B would possibly throw two
types of exceptions: InvalidPathException and IOException,
which correspond to the two issues, respectively. To deal
with the two possible exceptions in method B, the developer
needs to either handle the exception, i.e., determine the al-
ternative actions when such exception happens, or propagate
the exception such that a different method would manage
the issue. In our example, the developer decides to handle
InvalidPathException only and to propagate IOException.

1Source code, binaries, statistical tests and Tableau visualizations with raw
data are available online at https://guipadua.github.io/scam2017.

Fig. 1. Flows related to A.

is propagated by A, that is IOException, represented by the
bottom double line arrow in Figure ??.

2) Handling practice complements: raising, documenting
and propagating practice: We mentioned that the developer
already know that B can throw two exception types. However,
such exception types are not always so clear at the develop-
ment moment. Moreover, B could be executing other functions
that are propagating the issues.

In our example, if a developer consult the source code of B
(listing ??) he would identify the propagation of IOException
in the throws blocks. He would also discover the calls to C and
getPath. These methods are then consulted. C is represented
in listing ??.

public void B() throws IOException
{
C();
fileSystem.getPath(invalidPath);

}

Listing 2. An exception handling example. B propagates two exceptions from
two different methods.

/**
*
* @throws IOException
* Method called when disk failed.
*
*/
public static void C() throws IOException

{
throw new IOException();

}

Listing 3. An exception handling example. C raises and propagates one
exception.

III. METHODOLOGY

In this section, we present the methodology of our study. In
order to ease the explanation of our methodology, we first
use an illustrative example with which we then introduce
our exception flow analysis. Finally, we present the subject
projects of our study.

A. An illustrative example of exception handling practices
In this subsection, we explain an illustrative example that

handles, raises and propagates exceptions. The example also

illustrates the means of documenting possible exceptions.
1) Handling possible exceptions: In this example, a devel-

oper would like to implement a method named A. The method
A requires to execute a method named B. The developer, by
other means, has the knowledge that B can potentially face
two issues: 1) having a invalid path as input and 2) I/O issues.
Therefore, instead of executing as expected, method B would
possibly throw two types of exceptions: InvalidPathException
and IOException, which correspond to the two issues. To
deal with the two possible exceptions in method B, devel-
oper needs to either handle the exception, i.e., determine the
alternative actions when such exception happens, or propagate
the exception such that a different method would handle the
exception. In our example, developers decide to only handle
InvalidPathException exception and to propagate IOException.

2) Raising and propagating exceptions: As mentioned, de-
velopers have the knowledge that B can have two issues, corre-
sponding to two possible exceptions. These two exceptions can
be either newly raised or propagated from another method that
B calls (e.g., method C and the method getPath). Developers
can use the throws blocks to newly raise an exception. In
our example, developers raise IOException with the throws
block in the method C. Such newly raised exceptions will be
propagated to all the methods that call C.

3) Documenting exceptions: In our example, a developer
can consult the source code of B and C to identify the raise of
IOException in the throw statement. However, source code is
not always available for a method. For example, the method
getPath called in method B is declared by an externals API.
Developers would need to consult the documentation (such as
JavaDoc) of the method to discover the propagation of the
possible InvalidPathException.

There could be cases when an exception is thrown but still
not available in documentation. Therefore, in some program-
ming languages (like Java), a possible exception can be part of
the method declaration. For example, method B and C declares
the possible exception that is propagated by using throws in the
method declaration. However, some exceptions can be remain
undeclared (like InvalidPathException).

B. Exception flow analysis
In the previous subsection, we presented an example of

a exception handling scenario with its related flows. In this
section, we present our methodology that automatically extract
all possible exceptions and their flows in Java and C# projects.
Our automated tool is built by leveraging Eclipse JDT Core
and .NET Compiler Platform (“Roslyn”) to parse the Java and
C# source code, respectively. As an overview, our automated
tool consistent of three steps. Second, using the AST, we
identify all sources of possible exceptions. Third, we identify
the exception handling blocks (catch blocks) where exceptions
are handled. Finally, we recover the flow of exceptions by con-
structing call graph that is relevant to the possible exceptions.
1

1Our source code, binaries and Tableau visualizations with raw data are
available online at https://guipadua.github.io/scam2017.

Fig. 1. Flows related to A.

is propagated by A, that is IOException, represented by the
bottom double line arrow in Figure ??.

2) Handling practice complements: raising, documenting
and propagating practice: We mentioned that the developer
already know that B can throw two exception types. However,
such exception types are not always so clear at the develop-
ment moment. Moreover, B could be executing other functions
that are propagating the issues.

In our example, if a developer consult the source code of B
(listing ??) he would identify the propagation of IOException
in the throws blocks. He would also discover the calls to C and
getPath. These methods are then consulted. C is represented
in listing ??.

public void B() throws IOException
{
C();
fileSystem.getPath(invalidPath);

}

Listing 2. An exception handling example. B propagates two exceptions from
two different methods.

/**
*
* @throws IOException
* Method called when disk failed.
*
*/
public static void C() throws IOException

{
throw new IOException();

}

Listing 3. An exception handling example. C raises and propagates one
exception.

III. METHODOLOGY

In this section, we present the methodology of our study. In
order to ease the explanation of our methodology, we first
use an illustrative example with which we then introduce
our exception flow analysis. Finally, we present the subject
projects of our study.

A. An illustrative example of exception handling practices
In this subsection, we explain an illustrative example that

handles, raises and propagates exceptions. The example also

illustrates the means of documenting possible exceptions.
1) Handling possible exceptions: In this example, a devel-

oper would like to implement a method named A. The method
A requires to execute a method named B. The developer, by
other means, has the knowledge that B can potentially face
two issues: 1) having a invalid path as input and 2) I/O issues.
Therefore, instead of executing as expected, method B would
possibly throw two types of exceptions: InvalidPathException
and IOException, which correspond to the two issues. To
deal with the two possible exceptions in method B, devel-
oper needs to either handle the exception, i.e., determine the
alternative actions when such exception happens, or propagate
the exception such that a different method would handle the
exception. In our example, developers decide to only handle
InvalidPathException exception and to propagate IOException.

2) Raising and propagating exceptions: As mentioned, de-
velopers have the knowledge that B can have two issues, corre-
sponding to two possible exceptions. These two exceptions can
be either newly raised or propagated from another method that
B calls (e.g., method C and the method getPath). Developers
can use the throws blocks to newly raise an exception. In
our example, developers raise IOException with the throws
block in the method C. Such newly raised exceptions will be
propagated to all the methods that call C.

3) Documenting exceptions: In our example, a developer
can consult the source code of B and C to identify the raise of
IOException in the throw statement. However, source code is
not always available for a method. For example, the method
getPath called in method B is declared by an externals API.
Developers would need to consult the documentation (such as
JavaDoc) of the method to discover the propagation of the
possible InvalidPathException.

There could be cases when an exception is thrown but still
not available in documentation. Therefore, in some program-
ming languages (like Java), a possible exception can be part of
the method declaration. For example, method B and C declares
the possible exception that is propagated by using throws in the
method declaration. However, some exceptions can be remain
undeclared (like InvalidPathException).

B. Exception flow analysis
In the previous subsection, we presented an example of

a exception handling scenario with its related flows. In this
section, we present our methodology that automatically extract
all possible exceptions and their flows in Java and C# projects.
Our automated tool is built by leveraging Eclipse JDT Core
and .NET Compiler Platform (“Roslyn”) to parse the Java and
C# source code, respectively. As an overview, our automated
tool consistent of three steps. Second, using the AST, we
identify all sources of possible exceptions. Third, we identify
the exception handling blocks (catch blocks) where exceptions
are handled. Finally, we recover the flow of exceptions by con-
structing call graph that is relevant to the possible exceptions.
1

1Our source code, binaries and Tableau visualizations with raw data are
available online at https://guipadua.github.io/scam2017.

ensure and improve the quality and usefulness of exception
handling in practice.

The rest of the paper is organized as follows: Section
II presents the background of exception handling features
through an illustrative example. Section III discusses the
related prior research of this paper. Section IV presents the
methodology of the exception flow analysis and our case study
setup. Section V to VIII present the results of our case study.
Section IX discusses the threats to the validity of our findings.
Finally, Section X concludes the paper and discusses potential
future research directions based on our research findings.

II. RELATED WORK

TODO: rewrite to be topic oriented, not paper.
Exception Flow Analysis and Documentation: Previous

work Sena et al. [7] investigated 656 Java libraries from the
Maven repository for exceptions flows. However, based on
their approach only a small number of catch blocks per library
were evaluated. We extend their work looking into a higher
number of flows per system (e.g. in Apache ANT we identified
930 catch blocks, compared to 2 identified by their approach),
different types of system and including also .NET systems.
We also focus on the perspective of the try blocks, not single
flows. Their findings confirms that API runtime exceptions are
poorly documented.

Cabral and Marques [8] identify that infrastructure and
libraries has better exception handling documentation when
compared to applications. The number of documented excep-
tion were 20% and 15% compared to 2% for applications.
They do analysis in call stack levels per caught exception, but
not at the try block level. It cannot be told what is the level
in a common scenario.

Although Coelho et al. [9] considered the exception flows
in Aspect oriented systems, they introduced measurements that
we extended in our work. Similar measurements were applied
at the try block perspective, and in different programming
languages.

Robillard and Murphy [10] created a tool to analyse excep-
tion flows in Java programs at at point of the system. Our work
is similar in terms of approach since we also use AST and call
graph navigation. We also share the ability of identifying the
flows at any point of the program. We complement their work
by including other different analysis and including different
projects and programming languages in our datasets. They
studied subsumption but did not relate to the actions.

A tool called eFlowMining [11] uses a different approach
for .NET related languages, and focus on the evolution of
exception handling code. They applied their tool in smaller
systems, with a maximum of 45 try blocks, using different
measurements.

Java control flows, including inappropriate coding patterns
were evaluated in [12]. They also provide schematic views of
possible exception types at any point in the program, however
they don’t present any relation with documentation or data
analysis at the try block level.

A recent paper, Context Dependent Java Exceptions Hier-
archy, proposes a new exception hirarchy. This could improve
how developers would deal with exception handling complex-
ity.

[13] reveals exceptions on C++. Their work also indicates
the problem that exceptions are hard and also that there
is an educational issue. They list the exception types most
common on C++ and they mentioned that the quantity of types
can indicate the concern of a project in terms of exception
handling.

[14] related caught exception types in Java and .Net with the
actions taken. In our work we include the possible exception
types based on our flow analysis.

Analysis at the try block scenario. Many papers might have
looked into things similar to our work, but they consider
unique flows across methods, they don’t report based in try
blocks. That’s a big differential in our work.

There are different actions and their respective programming
mechanisms involved in exception handling: 1) defining an
exception using a type declaration, 2) raising an exception
using a throw statement, 3) propagating an exception in a
method by not handling it or using a throws statement and
4) handling an exception using a catch block.

In this paper, we focus on the actions of handling of
exceptions from the perspective of the explicit mechanisms
(i.e. try-catch) meanwhile considering the other three actions
(i.e. to define, to raise, to propagate an exception) in our
analysis.

1) Handling practice: an example: As an basic handling
example, imagine that a developer would like to implement
a function called A. This function requires to execute the
function B. However, the developer, by other means, already
know that B can potentially face two issues and, in that case,
instead of executing as expected, B would possibly throw two
exception types. To deal with the possible exception types the
developer needs to either determine the alternative actions that
A will execute or propagate the exception so that a different
method would take care of it. The listing ?? depicts the above
scenario.

public void A() throws IOException
{

try
{

B();
}
catch (InvalidPathException ex)
{
e.printStackTrace();
}

}
}

Listing 1. An exception handling example.

The two exceptions that B can throw are exception flows
that arrive at A. Figure ?? represents such flows. One exception
flow is handled at A, that is InvalidPathException, represented
by the top single line arrow in Figure ??. One exception flow

source of exception 1:
throw statement

method call

IOException

IOException
InvalidPathException

exception
flow(s)

source of exception 3:
documentation in comment

source of exception 2: method declaration

source of
exception

IOException

documentation

source of exception 4:
external documentation

getPath can throw
InvalidPathException

Fig. 1. An illustrative example.

2) Raising and propagating exceptions: As mentioned, the
developer knows that B can have two issues, corresponding
to two possible exceptions. These two exceptions can be
either newly raised or propagated from another method that
B calls (e.g., method C and method getPath). Developers
can use a throw statement to raise an exception. In our
example, developers newly raise IOException with the throw
statement in the method C. Moreover, if the issue happens,
such exception will propagate to all the methods that call C.

3) Documenting exceptions: From our example, a devel-
oper could consult the source code of B and C to identify
the rise of IOException in the throw statement. However,
the source code is not always available for a method. For
example, the method getPath called in method B is declared
by an external API. Developers would need to consult the
documentation (such as JavaDoc) of the method to discover
the propagation of the possible InvalidPathException.

There could be cases when an exception is thrown but
still not available in the documentation. Therefore, in some
programming languages (like Java), a possible exception can
be part of the method declaration. For example, method A,
B, and C declares that a possible exception can propagate in
the throws block of the method declaration. However, some
exceptions can remain undeclared (like InvalidPathException).

B. Exception flow analysis
In the previous subsection, we presented an example of

an exception handling scenario with its related flows. In
this section, we present our methodology that automatically

3

extracts possible exceptions and their flows in Java and C#
projects. We build an automated tool using Eclipse JDT Core
and .NET Compiler Platform (“Roslyn”) to parse the Java and
C# source code, respectively. As an overview, our analysis
consists of three main steps. First, we identify the exception
handling blocks (catch blocks). Second, we recover the flow
of exceptions by constructing the call graph that is relevant to
the identified catch blocks. Finally, by traversing the flow of
exceptions, we identify the sources of possible exceptions.

As a building block, we obtain the abstract syntax tree
(AST) from the source code. In this step, we include not
only the source code but also the binary files of dependencies
from the Java Virtual Machine (JVM) for Java or the .NET
Global Assembly Cache (GAC) for C#. The dependencies of
third party libraries used by the projects are also included.
These dependencies enrich the analysis by providing binding
information, which draws connections between the different
parts of a program (i.e. any method call and its origin, either
if part of an internal declaration or external dependency). Also,
we enrich the AST by parsing the documentation of the de-
pendencies mentioned above as another source of information.

1) Identifying the handling of exceptions: We collect all
the exception handling scenarios through all the catch blocks
available in the AST. At the catch block, we use the AST
elements to identify the methods that are executed to handle
each exception as handling actions. We also obtain the related
try blocks, which provide a list of called methods. These
methods are necessary since they might raise or propagate
the exceptions that the catch block potentially handles. In
our example, we identify the catch block in method A. The
method printStackTrace is the handling action of the exception
InvalidPathException. From this catch block, we obtain the try
block in which we find the call to method B. Method B can
potentially propagate InvalidPathException and IOException.

2) Constructing call graph: Exceptions are propagated in
method calls. Therefore, we leverage call graphs to recover the
flow of exceptions. To handle polymorphism without risking
over-estimation, we only consider the possible exceptions of
the method that is declared in the parent class, since they are
more generic and often called within the derived methods.
Based on the previous step, for each identified method we
traverse its call graph in a depth-first manner to find its
possible exceptions. In our example, we traverse the call graph
of method B and find two possible exceptions: IOException
from method C and InvalidPathException from method get-
Path. Hence, based on the examples’ catch block, we know
that the InvalidPathException is handled in method A while
IOException is propagated without handling.

3) Identifying sources of exceptions: During the call graph
traverse and based on the AST, we identify four sources of
exceptions. They are: 1) The newly raised exception by the
throw statement, 2) the declared exception in the throws of
the method declaration (only for Java), 3) the documentation
as comments in the source code (like JavaDoc comments), and
4) the external documentation. In our illustrative example, we
can identify the newly raised IOException in a throw statement

TABLE II
AN OVERVIEW OF THE SELECTED SUBJECT PROJECTS.

Project Release Version Type # Try # Catch # Method (K) KLOC

C#

Glimpse 1.8.6 App. 56 57 1 31

Google API v1.15.0 Lib. 22 30 16 628

OpenRA release-20160508 App. 138 143 7 125

ShareX v11.1.0 App. 334 341 7 177

SharpDevelop 5.0.0 App. 940 1060 41 923

SignalR 2.2.1 Lib. 94 105 2 38

Umbraco-CMS release-7.5.0 App. 595 615 15 362

Java

Apache ANT rel/1.9.7 App. 934 1139 11 158

Eclipse JDT Core I20160803-2000 Lib. 1,424 1655 25 383

Elasticsearch v2.4.0 App. 385 408 12 108

Guava v19.0 Lib. 263 317 10 79

Hadoop Common rel/release-2.6.4 Lib. 975 1144 14 147

Hadoop HDFS rel/release-2.6.4 App. 525 586 4 44

Hadoop MapReduce rel/release-2.6.4 App. 293 367 6 57

Hadoop YARN rel/release-2.6.4 Lib. 1,192 1529 29 257

Spring Framework v4.3.2.RELEASE Lib. 1,940 2301 30 349

Total 10,110 11,797 230 3,866

in method C (source 1), the declaration of the IOException in
methods A, B, and C (source 2), and the JavaDoc documen-
tation of method C for IOException (source 3). In addition,
since we include the information from external libraries, our
tool can also identify that the method getPath called in method
B is a source of a possible InvalidPathException (source 4).

Some exceptions can be identified from multiple sources.
For example, IOException is identified by three separate
sources. We do not consider the multiple sources as different
exceptions if the exceptions are associated with the same
method call (e.g. method B). We label the separate sources
of an exception as detailed information for each method call.

C. Subject projects

Table II depicts the studied subject projects. Our study
considers Java and C# due to their popularity and prior
research (see Section II). Moreover, we include C# because of
its different approach compared to Java exception handling.
To facilitate replication of our work, we chose open source
projects that are available on GitHub.

We leverage GitHub filters on the number of contributors
(i.e. projects with multiple contributors) and the number of
stargazers (i.e. projects with more than ten stargazers), as they
can achieve a good precision for selecting engineered software
projects [29]. To narrow down the number of projects we
also sorted the projects in descending order of the number of
stargazers. Moreover, to potentially investigate the differences
in exception handling practices and increase generalizability,
we picked projects based on the filtering mentioned above. Af-
ter reading the official description of the projects, we selected
multiple applications and multiple libraries (i.e. project type),
as well as multiple projects for different business domains
(i.e. project purpose). From each project, we selected the most
recent stable version of the source code at the moment of data
collection for analysis.

4

IV. QUANTITY OF EXCEPTIONS

In this section, we study the quantity of all possible excep-
tions that are in each try block.

A. All and propagated possible exceptions
Ideally, developers should be aware of all possible excep-

tions to decide between handling or propagating them. To do
that, developers need to navigate the call graph of a system
that could extend to multiple ramifications. Hence, the more
exceptions there are, the more challenging (i.e. exponential
growth) it is for developers to comprehend and decide about
exception handling. Besides that, missing possible exceptions
can be a reason for the lack of a handler that should exist,
which is considered one of the top causes of exception
handlings bugs [8]. For those reasons, we study the quantity
of total and propagated possible exceptions in each exception
handling block.

As described in our methodology (see Section III), we
collect all the methods called in each try block. For those
methods, we can recover the possible exceptions. Afterward,
we can measure the quantity of possible exception by counting
the unique types of exceptions in each try block.

We find that there typically exist multiple possible excep-
tions in each try block (see Figure 2). The median number of
distinct possible exception per try block is four and two, for
C# and Java respectively. More than 48% (C#) and 38% (Java)
of try blocks can throw in between two and five exceptions.
Moreover, more than 36% (C#) and 24% (Java) of the try
blocks have six or more possible exceptions. For example, an
important method named processCompiledUnits(int,boolean)
in Eclipse JDT Core in the Compiler class has a try block with
33 distinct possible exceptions. Developers should properly
handle exceptions in such an important method, to ensure
reliability.

Among all possible exceptions, there often exist possible
exceptions that are not handled by any of the catch blocks
that are associated with a try block [30]. These unhandled
exceptions may increase the challenge of exception handling
practice since they will be propagated and will need to
be handled elsewhere. If the propagated exceptions remain
uncaught across the whole system, there could be a risk
of system failures [20], [7], [8]. Therefore, we identify the
possible exceptions that are not handled by the catch block.

Figure 2 presents the possible propagated exceptions for
each try statement. We find that there may exist a large
number (up to 34) of possible exceptions that are unhandled in
each try block. For example, a method execute(List,int) from
class org.apache.tools.ant.taskdefs.optional.junit.JUnitTask in
Apache ANT has 25 possible exceptions while the correspond-
ing catch block only handles IOException.⇤

⇥

�

�

Finding 1: There often exist multiple possible exceptions in each
try block, and, out of those, many are propagated.
Implications: Current state-of-the-practice may not provide in-
formation to developers about all possible exceptions. Automated
techniques may help developers be aware of all possible excep-
tions to make exception handling decisions.

B. Potentially recoverable yet propagated exceptions

In the previous subsection, we find that a significant amount
of the possible exceptions are propagated. However, not all
exceptions are easy to recover or, more importantly, should
even be recovered. For example, exceptions such as Thread-
Death in Java, and OutOfMemoryException in C# cannot
feasibly be recovered. In fact, both Java and C# define the
recoverability level of exceptions in their documentation [31],
[32]. In particular, they suggest that developers should handle
potentially recoverable exceptions while developers may not
handle potentially unrecoverable ones. Hence, we first group
all the propagated exceptions into either potentially recover-
able or potentially unrecoverable, according to the specific
guidance on Java or C# documentation. Then we count the
number of propagated exceptions with potential recoverability.

We find that almost 8% (117) of C# and more than 19%
(1,359) of Java try blocks have at least one potentially re-
coverable yet propagated exception. For example, a method
named rename in Hadoop HDFS for file renaming features has
a possible and potentially recoverable exception called FileAl-
readyExistsException. This exception indicates the situation
where a file is renamed to another existing file. However, this
potentially recoverable exception is not handled by any catch
block in that method.⇤

⇥

�

�

Finding 2: There exists a considerable amount of potentially
recoverable exceptions that are propagated, even though they are
recommended to be handled by Java and C#.
Implications: Exception flow analysis can provide automated
tooling support to alert developers about not handling potentially
recoverable exceptions.

V. DIVERSITY OF EXCEPTIONS

There can be a diverse set of exceptions being used across
try blocks. Prior research discusses that the use of a high
number of distinct exception types might represent a greater
concern with exception handling [12]. Therefore, in this
section, we study the diversity of exceptions in our subject
projects.

We count the total number of distinct exception types in
each project, and the amount of try blocks in which each
type of exception appears. Table III shows the percentage of
the exception types of each project that appear in different
quantities of try blocks. Despite the large number (up to 97 in
C# and 249 in Java) of distinct exception types, there exist a
considerable amount of exception types that only appear in few
try blocks. In fact, over half of the exception types in C#, and
almost 1/3 of the exception types in Java only appear in one
try block. Such results imply that although the high number
of distinct exception types may be a burden to developers, the
burden may not be as high since a considerable amount of the
exception types would only affect a small portion of the code.

5

Language / Project

C# Java

Glimpse Google
API

OpenRA ShareX SharpDe.. SignalR Umbraco Apache
ANT

E. JDT
Core

Elasticse.. Guava H.
Common

H. HDFS H. MapR
educe

H. YARN Spring

0

5

10

15

20

P
ro

p.
 a

nd
 P

ot
en

ti.
.

0

5

10

15

20

P

ro
pa

ga
te

d

0

5

10

15

20

To

ta
l

Median: 0 Median: 0

Median: 0 Median: 1

Median: 4
Median: 2

Fig. 2. Number of possible exceptions per try block for each project broken down by Propagated and Potentially Recoverable, Propagated, and Total.

TABLE III
TOTAL AMOUNT OF DISTINCT EXCEPTION TYPES AND THE PERCENTAGES
OF DISTINCT EXCEPTION TYPES THAT APPEAR IN DIFFERENT QUANTITY

OF TRY BLOCKS.

Try blocks
Project 1 2 3 4 5 >5 Total

C#

Glimpse 27.78% 38.89% 11.11% 22.22% 18

Google API 28.00% 40.00% 12.00% 4.00% 16.00% 25

OpenRA 35.71% 4.76% 7.14% 16.67% 2.38% 33.33% 42

ShareX 13.04% 8.70% 6.52% 2.17% 6.52% 63.04% 46

SharpDevelop 19.59% 8.25% 6.19% 4.12% 2.06% 59.79% 97

SignalR 56.67% 16.67% 3.33% 6.67% 16.67% 30

Umbraco 27.69% 9.23% 4.62% 1.54% 56.92% 65

Total 55.88% 25.00% 13.97% 9.56% 5.15% 47.79% 214

Java

Apache ANT 15.73% 6.74% 6.74% 3.37% 3.37% 64.04% 89

E. JDT Core 5.56% 2.78% 2.78% 4.17% 1.39% 83.33% 72

Elasticsearch 27.78% 12.50% 16.67% 9.72% 4.17% 29.17% 72

Guava 24.00% 12.00% 16.00% 2.00% 10.00% 36.00% 50

H. Common 14.53% 15.12% 9.88% 11.63% 8.14% 40.70% 172

H. HDFS 27.50% 13.75% 16.25% 7.50% 1.25% 33.75% 80

H. MapReduce 21.74% 8.70% 4.35% 8.70% 2.17% 54.35% 46

H. YARN 17.53% 4.12% 11.34% 6.19% 3.09% 57.73% 97

Spring 22.09% 12.05% 7.63% 10.04% 4.82% 43.37% 249

Total 32.93% 17.76% 15.97% 14.77% 8.38% 42.32% 662

Grand Total 37.83% 19.31% 15.54% 13.66% 7.69% 43.49% 876

⇤

⇥

�

�

Finding 3: With a large amount of exceptions exist in each
project, many possible exception types appear in only one try
block.
Implications: Developers may not need to be aware of all
exception types in a project by receiving automated suggestions
of the exceptions that he/she needs to understand.

VI. SOURCES OF EXCEPTIONS

The same exception may be traced back from different
sources. In this section, we study the sources of exceptions
per try block.

A. Multiple sources of the same exception
The multiple sources of exceptions may increase the com-

plexity of exception handling. Consequently, a developer
would need to comprehend and investigate more methods in
the source code to effectively handle exceptions. For example,
developers may encounter a FileNotFoundException due to
missing an input file or configuration file. However, developers
may need different actions to handle such an exception since
missing an input file may be caused by users’ mistake while
missing a configuration file is a critical issue of the software.
Multiple sources of the same exception may also impact testers
since they would need to properly test the exception behavior
as well as the multiple possible paths of control flow.

We group each possible exception by the distinct methods
that act as a source of exceptions. We only consider distinct
methods since the same method may not need different ways
to handle the exception while the exception propagated from
various methods may need to be handled differently. In Ta-
ble IV, we present the percentage of possible exceptions that
are traced back from zero, one, two and more than two distinct
methods. The first group is from zero methods, which means
that these possible exceptions were traced back to explicit
throw invocations, not method invocations.

Although most of the possible exceptions (above 76%) are
traced back to a single method, we observe that more than 22%
of the exceptions are traced back to multiple invoked methods.
The try blocks with the highest number of methods can have
from two to 17 among C# projects; while, for Java, it is be-
tween five and 34. For example, the Umbraco C# class called
TypeFinder performs lazy accesses to all assemblies inside a
single try block and therefore System.ArgumentNullException
can be traced back from 14 different invoked methods. We
also noticed that exceptions that are super classes of other
exceptions (e.g., IOException) have a higher than average
chances of being from multiple sources.

6

TABLE IV
PERCENTAGE OF DISTINCT EXCEPTIONS THAT ARE TRACED BACK TO ONE,

TWO OR OVER TWO METHODS.

Distinct methods
0 1 2 >2 Total

C# 1.05% 76.11% 14.05% 8.80% 7,638

Java 0.61% 77.18% 13.00% 9.20% 28,854

⇤

⇥

�

�

Finding 4: Over 22% of the exceptions are traced from different
methods.
Implications: Automated tools are needed to help developers
understand the source of the exception if it is traced back to
different methods.

B. Sources of exception documentation

Prior studies revealed that lacking immediate documentation
is one of the challenges of exception handling [14], [17], [18].
Prior studies observed a small number of documented excep-
tions. As shown in our illustrative example (see Section III-A),
possible exceptions can be recovered from up to four different
sources. They are: 1) the newly raised exception by the throw
statement in the source code, 2) the declared exception in
the throws of the method declaration (only for Java), 3) the
documentation as comments in the source code (like JavaDoc
comments) and 4) the external documentation. By recovering
the sources of each possible exception using exception flow
analysis, we may be able to provide the documentation of
possible exceptions. For Java, we only recover documentation
for unchecked exceptions since checked exceptions must be
specified in method declarations.

We find that, from all the possible exceptions that we
identify, 93% for Java and 71% for C# can be retrieved from
the external documentation of dependencies. Figure 3 depicts
the sets of possible exceptions per try block that were retrieved
by our exception flow analysis. Our findings show that the
challenge of having a low amount of documented exceptions
can be well addressed by applying exception flow analysis
with the information from external documents of libraries. We
find that such rich documents are typically from the exceptions
that are provided by the system libraries. Therefore, the high
availability of such documentation can be expected to assist
developers not only for our subject systems but also for the
majority of Java and C# projects.⇤

⇥

�

�
Finding 5: The libraries used by the systems can provide
documentation to most of the possible exceptions.
Implications: Developers should leverage automated flow anal-
ysis to understand possible exceptions.

VII. EXCEPTION HANDLING STRATEGIES AND ACTIONS

In this section, we study the strategy and actions in excep-
tion handling practices considering the exception flows of each
handler.

(a) Java Unchecked Exceptions.

(b) C# Exceptions

Fig. 3. Quantity of identified possible exceptions per source of information.

A. Exception handling strategies

Exception handling strategy describes the manner in which
an exception is handled. In particular, the relationship between
the possible exception in a try block and the handler exception
in the corresponding catch blocks. There exist in total two
handling strategies:

• Specific, is the strategy when the type of a possible
exception is exactly the same as the handler exception.

• Subsumption, is the strategy when the handler exception
is a superclass of a possible exception.

Since there can be multiple possible exceptions, it can be over-
whelming for a developer to handle each possible exception
with a Specific strategy. On the other hand, the Subsumption
strategy may introduce uncertainty to the caught exception.
To study the handling strategies, we compare each possible
exception with the handler exception in the corresponding
catch block. Figure 4 depicts the quantity of distinct possible
exception per try block that is handled according to each
strategy.

The majority of the exceptions are handled with a subsump-
tion strategy, while only a small portion of the exceptions
are handled specifically. The results show that developers

7

Lang.. Project

0 5 10 15
Subsumption

0 5 10 15
Specific

C# Glimpse

Google API

OpenRA

ShareX

SharpDevel..

SignalR

Umbraco

Total

Java Apache ANT

E. JDT Core

Elasticsearch

Guava

H. Common

H. HDFS

H. MapRedu..

H. YARN

Spring

Total

Median: 2 Median: 0

Median: 0 Median: 1

Fig. 4. Quantity of possible exceptions per try block per project by handling
strategy.

tend to over-catch exceptions. The extreme case of sub-
sumption strategy is the “Catch Generic” exception handling
anti-pattern [13], where developers simply use an exception
type which can catch any exceptions in the software, e.g.,
Exception in Java. Such practice is heavily discussed in prior
research [20], [17] and is considered to be harmful since
developers cannot optimize the handling of the exception
based on the exact type of the exception, but rather only know
that there may exist some exceptions during run-time.⇤

⇥

�

�

Finding 6: Only a small portion of the exceptions are handled
with the Specific strategy.
Implications: Developers should be guided to prioritize on
handling exception with the Specific strategy, since developers
cannot optimize the handling of an exception without knowing
its exact type information.

B. Exception handling actions

During the exception flow analysis (see Section III), we
collect a set of method calls in each catch block to know
how each exception is handled. Prior studies [3], [17], [14],
[16], [28] propose a list of actions based on the combination of
method calls in the catch block as Exception handling actions.
Table V presents the list of actions that are defined in prior
research and are used in this paper. To further understand
how exceptions are handled, we study the exception handling
actions in our subject projects.

Figure 5 presents the percentages of possible exceptions of
each project that are handled using a particular type of action.
We observe that Java and C# have differences in executing
various actions when handling exceptions. To determine the
differences, we perform Wilcoxon Rank Sum test [33] to
compare the percentage of possible exceptions that are handled

using each type of action in each C# and Java project. Hence,
we examined if there exists statistically significant difference
(i.e. p-value < 0.05) between Java and C#. A p-value < 0.05
means that the difference is likely not by chance. We choose
Wilcoxon Rank Sum test since it does not have an assumption
on the distribution of the data.

We find statistically significant difference between Java
and C# for exception handing with actions “Throw Wrap”,
“Throw New”, “Nested Try”, “Continue” and “Todo”. Among
these actions, “Throw Wrap”, “Throw New”and “Todo” may
indicate that the exceptions are not effectively handled but
rather propagated or ignored. All these three actions show up
more in Java than C#. We consider the reason may be that
Java compiler forces developers to explicitly manage checked
exceptions while developers may not have the knowledge of
how to handle them properly. To simply make the program
compile, developers potentially take these actions. Further
studies should investigate why such actions are chosen more
in Java than C#.⇤

⇥

�

�

Finding 7: Java and C# have differences in leveraging various
actions when handling exceptions.
Implications: More in-depth analysis and user studies are needed
to further understand the rationale of differences of Java and C#
exception handling practices.

We also compare the actions that are taken when the excep-
tions are handled with either specific or subsumption strategy.
We perform Wilcoxon Rank Sum test similar as when compar-
ing Java and C#. This time, for each particular programming
language and type of action, the test compared the percentage
of specific handling in each project with subsumption handling
in each project. Nonetheless, we observe only one action, i.e.,
Log, that is handled differently (statistically significant) with
specific or subsumption strategy.⇤

⇥

�

�
Finding 8: Only one action, Log in Java, is taken differently when
exceptions are handled with specific or subsumption strategy.
Implications: Research and tooling support are needed to guide
how to handle exceptions, especially with the specific strategy.

We would like to know if any particular actions are taken
when handling some special possible exception. With such
knowledge, we may be able to suggest actions automatically
to developers handling exceptions. We gather a list of the ten
most handled types of possible exceptions in Java and C#,
respectively (see Table VI). We also obtain the percentage of
possible exceptions that are handled using each action for each
exception type. Similarly, we use Wilcoxon Rank Sum test to
compare. For each particular programming language, action,
and exception type, the test compared the percentage of the
given type in each project with the combined value of all other
types of exceptions in each project. We find with statistical
significance that, for Java, all top exceptions have at least one
action that is taken differently from the rest of the exceptions,
and, for C#, two top exceptions has such difference.

8

Language

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00% 50.00% 55.00% 60.00% 65.00% 70.00%
Value

Method Java

C#

Throw
Wrap

Java

C#

Log Java

C#

Throw
New

Java

C#

Throw
Current

Java

C#

Return Java

C#

Nested
Try

Java

C#

Empty Java

C#

Continue Java

C#

Abort Java

C#

Todo Java

C#

Default Java

C#

50.78%

48.08%

26.64%

19.56%

11.85%

10.24%

4.67%

4.23%

0.26%

0.13%

0.09%

0.00%

Fig. 5. Percentage of possible exceptions that are handled using each type
of action.

⇤

⇥

�

�

Finding 9: All top 10 Java and 2 out of top 10 C# exceptions
have at least one action that is taken statistically significantly
differently from the rest exceptions.
Implications: Developers may consider leveraging automated
suggestions of exception handling actions.

TABLE V
LIST OF THE DETECTED ACTIONS.

Action Short Description

Abort The handler contains an abort statement [3].

Continue The handler contains a continue statement [14].

Default The handler contains the IDE suggested method (Java only).

Empty The handler is empty [3], [17], [14], [16].

Log The handler displays or logs some information [17], [14], [16].

Method The handler contains a method invocation different
than the other actions listed in this table. [14], [17].

Nested Try The handler contains a new try statement [28].

Return The handler contains a return statement [17], [14].

Throw Current The handler contains a throw statement
without a new exception instantiation [17], [14], [16].

Throw New The handler contains a throw statement
with a new exception instantiation [17], [14], [16].

Throw Wrap The handler contains a throw statement using the original
exception or its associated information [16].

Todo The handler contains TODO or FIXME comments [3].

VIII. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our
findings.
External validity. Our study is based on a set of open source
Java and C# projects from GitHub. Our findings may not

TABLE VI
LIST OF TOP 10 COMMON EXCEPTION TYPES IN THE STUDIED PROJECTS.

C# Java

System.ArgumentNullException java.io.IOException†
System.ArgumentException java.lang.IllegalArgumentException†
System.NotSupportedException† java.lang.NullPointerException†
System.ArgumentOutOfRangeException java.lang.IndexOutOfBoundsException†
System.InvalidOperationException java.lang.SecurityException†
System.FormatException java.lang.IllegalStateException†
System.IO.IOException java.lang.ExceptionInInitializerError†
System.IO.PathTooLongException† java.lang.ArrayStoreException†
System.Security.SecurityException java.lang.IllegalAccessException†
System.ObjectDisposedException java.lang.ClassNotFoundException†

†The exception has at least one actions that taken statistically significantly differently from the rest exceptions.

generalize to other projects, languages or commercial systems.
Replicating our study on other subjects may address this threat
and further understand the state-of-the-practice of exception
handling.
Internal validity. We aim to include all possible sources
of information in our automated exception flow analysis.
However, our analysis may still miss possible exceptions, if
there is a lack of documentation or the source code is not
compilable. Also, the documentation of the exception may be
incorrect or outdated. In our analysis, we trust the content of
documentation. Therefore, we cannot claim that our analysis
fully recovers all possible exceptions nor that the recovered
information is impeccable. Further studies may perform deeper
analysis on the quality of exception handling documentation
to address this threat.
Construct validity. Our study may not cover all possible
handling actions. We selected actions based on the previous
research in the subject [3], [17], [14], [16], [28]. Some actions
are not included in our study if they are either 1) require
heuristic to detect or 2) are not well explained in details in
related work.

Our possible exception identification approach is based on
a call graph approximation from static code analysis. We
may still miss possible exceptions due to under-estimation
for polymorphism or unresolved method overload. Although
such approximation may impact our findings, our choice of
under-estimation would not significantly alter the existence of
observed challenges of exception handling, i.e., the challenge
may appear even worse without the under-estimation. Nev-
ertheless, to complement our study, dynamic analysis on the
exception flow may be carried out to understand the system
exceptions during run-time.

IX. CONCLUSION

Exception handling is an important feature in modern
programming languages. However, prior studies unveil the
suboptimal usage of exception handling features in practice.
In this paper, we revisit practice of exception handling in 16
open source software in Java and C#. Although we confirm
that there exist suboptimal manners of exception handling,

9

more importantly, we highlight the opportunities of performing
source code analysis to recover exception flows to help practi-
tioners tackle various complex issues of handling exceptions.
In particular, the contributions of our paper are:

1) We design an automated tool that recovers exception
flows from both Java and C#.

2) We present empirical evidence to illustrate the chal-
lenges and complexity of exception handling in open
source systems.

3) Our exception flow analysis, as an automated tool, can
already provide valuable information to assist developers
better understand and make exception handling deci-
sions.

This paper highlights the opportunities and urgency of pro-
viding automated tooling to help developers make exception
handling decisions during the development of quality and
reliable software systems.

REFERENCES

[1] P. M. Melliar-Smith and B. Randell, “Software Reliability: The Role
of Programmed Exception Handling,” Reliable Computer Systems, pp.
143–153, 1985.

[2] C.-T. Chen, Y. C. Cheng, C.-Y. Hsieh, and I.-L. Wu, “Exception handling
refactorings: Directed by goals and driven by bug fixing,” Journal of
Systems and Software, vol. 82, no. 2, pp. 333–345, feb 2009.

[3] D. Yuan, Y. Luo, and X. Zhuang, “Simple Testing Can Prevent Most
Critical Failures,” 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), 2014.

[4] T. Cargill, C++ Gems, S. B. Lippman, Ed. New York, NY, USA: SIGS
Publications, Inc., 1996.

[5] B. Zhang and J. Clause, “Lightweight automated detection of unsafe
information leakage via exceptions,” Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis - ISSTA 2014, pp.
327–338, 2014.

[6] F. Cristian, “Exception Handling and Software Fault Tolerance,” Com-
puters, IEEE Transactions on, vol. C-31, no. 6, pp. 531–540, 1982.

[7] E. A. Barbosa, A. Garcia, and S. D. J. Barbosa, “Categorizing Faults
in Exception Handling: A Study of Open Source Projects,” in 2014
Brazilian Symposium on Software Engineering, no. September. IEEE,
sep 2014, pp. 11–20.

[8] F. Ebert, F. Castor, and A. Serebrenik, “An exploratory study on
exception handling bugs in Java programs,” Journal of Systems and
Software, vol. 106, pp. 82–101, aug 2015.

[9] S. Nakshatri, M. Hegde, and S. Thandra, “Analysis of exception handling
patterns in Java projects,” in Proceedings of the 13th International
Workshop on Mining Software Repositories - MSR ’16. New York,
New York, USA: ACM Press, 2016, pp. 500–503.

[10] M. B. Kery, C. Le Goues, and B. A. Myers, “Examining programmer
practices for locally handling exceptions,” in Proceedings of the 13th
International Workshop on Mining Software Repositories - MSR ’16.
New York, New York, USA: ACM Press, 2016, pp. 484–487.

[11] M. Asaduzzaman, M. Ahasanuzzaman, C. K. Roy, and K. A. Schneider,
“How developers use exception handling in Java?” in Proceedings of the
13th International Workshop on Mining Software Repositories - MSR
’16. New York, New York, USA: ACM Press, 2016, pp. 516–519.

[12] R. Bonifacio, F. Carvalho, G. N. Ramos, U. Kulesza, and R. Coelho,
“The use of C++ exception handling constructs: A comprehensive
study,” in 2015 IEEE 15th International Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE, sep 2015, pp. 21–30.

[13] G. B. de Pádua and W. Shang, “Studying the Prevalence of Exception
Handling,” 25th IEEE International Conference on Program Compre-
hension (ICPC ’17), pp. 1–4, 2017.

[14] B. Cabral and P. Marques, “Exception Handling: A Field Study in Java
and .NET,” in ECOOP 2007 Object-Oriented Programming, vol. 4609,
Berlin, Heidelberg, 2007, pp. 151–175.

[15] J. W. Jo, B. M. Chang, K. Yi, and K. M. Choe, “An uncaught exception
analysis for Java,” Journal of Systems and Software, vol. 72, no. 1, pp.
59–69, 2004.

[16] R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U. Kulesza,
A. von Staa, and C. Lucena, “Assessing the Impact of Aspects on
Exception Flows: An Exploratory Study,” in ECOOP 2008 – Object-
Oriented Programming: 22nd European Conference Paphos, Cyprus,
July 7-11, 2008 Proceedings, 2008, vol. 5142 LNCS, pp. 207–234.

[17] D. Sena, R. Coelho, U. Kulesza, and R. Bonifácio, “Understanding the
exception handling strategies of Java libraries,” in Proceedings of the
13th International Workshop on Mining Software Repositories - MSR
’16, 2016, pp. 212–222.

[18] M. Kechagia and D. Spinellis, “Undocumented and unchecked: excep-
tions that spell trouble,” in Proceedings of the 11th Working Conference
on Mining Software Repositories - MSR 2014. New York, New York,
USA: ACM Press, 2014, pp. 312–315.

[19] B. Cabral, P. Sacramento, and P. Marques, “Hidden truth behind .NET’s
exception handling today,” Software, IET, vol. 2, no. 1, pp. 233–250,
2007.

[20] S. Sinha, A. Orso, and M. Harrold, “Automated support for development,
maintenance, and testing in the presence of implicit flow control,” in
Proceedings. 26th International Conference on Software Engineering,
no. September, 2004, pp. 336–345.

[21] N. Cacho, T. César, T. Filipe, E. Soares, A. Cassio, R. Souza, I. Garcia,
E. A. Barbosa, and A. Garcia, “Trading robustness for maintainability:
an empirical study of evolving c# programs,” Proceedings of the 36th
International Conference on Software Engineering - ICSE 2014, no. iii,
pp. 584–595, 2014.

[22] N. Cacho, E. A. Barbosa, J. Araujo, F. Pranto, A. Garcia, T. Cesar,
E. Soares, A. Cassio, T. Filipe, and I. Garcia, “How Does Exception
Handling Behavior Evolve? An Exploratory Study in Java and C#
Applications,” in 2014 IEEE International Conference on Software
Maintenance and Evolution, no. 1. IEEE, sep 2014, pp. 31–40.

[23] M. P. Robillard and G. C. Murphy, “Analyzing Exception Flow in Java
Programs,” in Proceedings of the 7th European Software Engineering
Conference Held Jointly with the 7th ACM SIGSOFT International
Symp. on Foundations of Software Engineering, 1999, pp. 322–337.

[24] I. Garcia and N. Cacho, “eFlowMining: An Exception-Flow Analysis
Tool for .NET Applications,” in 2011 Fifth Latin-American Symposium
on Dependable Computing Workshops, no. i. IEEE, apr 2011, pp. 1–8.

[25] M. Kechagia, T. Sharma, and D. Spinellis, “Towards a context dependent
java exceptions hierarchy,” in Proceedings of the 39th International
Conference on Software Engineering Companion, ser. ICSE-C ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 347–349.

[26] L. Zhang and C. Krintz, “As-if-serial exception handling semantics for
Java futures,” Sci. of Computer Programming, vol. 74, pp. 314–332,
2009.

[27] B. Cabral and P. Marques, “A transactional model for automatic excep-
tion handling,” Computer Languages, Systems and Structures, vol. 37,
no. 1, pp. 43–61, 2011.

[28] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to Log: Helping Developers Make Informed Logging Decisions,” in
2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. IEEE, may 2015, pp. 415–425.

[29] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub
for engineered software projects,” Empirical Software Engineering, pp.
1–35, 2017.

[30] M. P. Robillard and G. C. Murphy, “Static analysis to support the
evolution of exception structure in object-oriented systems,” ACM Trans-
actions on Software Engineering and Methodology, vol. 12, no. 2, pp.
191–221, 2003.

[31] “Chapter 11. Exceptions - Java SE Specification.” [Online].
Available: http://docs.oracle.com/javase/specs/jls/se8/html/jls-11.html,
accessed 2017-03-29

[32] “Handling and Throwing Exceptions - .NET Framework
Documentation.” [Online]. Available: https://msdn.microsoft.com/en-
us/library/5b2yeyab(v=vs.110).aspx

[33] F. Wilcoxon and R. A. Wilcox, Some rapid approximate statistical
procedures. Lederle Laboratories, 1964.

10

